

TEACHING INSTRUCTIONAL DESIGN (BRP)

COURSE

CONTROL SYSTEM

by

Dr. Arief Sudarmaji

Undergraduate Program in Physics
Faculty of Mathematics and Natural Sciences
Universitas Indonesia
Depok
November 2020

UNIVERSITAS INDONESIA FACULTY OF MATHEMATICS AND NATURAL SCIENCES PHYSICS UNDERGRADUATE STUDY PROGRAM

	TEACHING	INSTRUCTIONAL	DESIGN						
Course Name	Control System	Credit(s)	Prerequisite course(s)	Requisite for course(s)	Integration Between Other Courses				
Course Code	SCPH603714								
Relation to Curriculum	-		Electronics 1 and		Laboratory Work of				
Semester	6	2	Electronics 2	-	Control				
Lecturer(s)	Dr. Arief Sudarmaji				System				
Course Description	Giving the basic concepts about linear transfer function systems and electrical systems, block of signal analysis, sensitivity of find signal disturbance in a feedback second order system, effects of simplification of linear systems systems using characteristic further parameter design of control systems in the process synthesis, Inter Model Control	s, linearization of unil diagram modelling, graded ack control system, control system, control f third pole and zero, analyzation of loop sonctions and the Ruth stem using the root loss of a stable open loop	inear systems, modelling raphical signal flow modern towards the variety of rolling the transient responsion a second order systems (open and closed Hurwitz method, controlling, determining the party system, determining the	g mathematical system delling, state variable of parameters in the course of a system, steadem, work index of course loop), testing the state system design: root cameters of PID using a parameters of a PID	e models, error control system, dy state errors, ontrol systems, oility of control locus concept, a trial and error with the Direct				

	analyzing the frequency response using the Bode and Nyquist plot, designing PI, PID, Lead, Lag, and Lead Lag systems, and finally, designing feedback systems with state variables.
Program Learning Ou	itcome (PLO)
PLO	Applying the concepts of Control Systems
PLO	Formulating problems and solving Physics and its application, as well as interdisciplinary problems related to science and mathematics clusters critically, creatively, and innovatively.
PLO	Solving simple scientific problems and presenting them orally and in writing
Course Learning Outo	come (CLO)
CLO	Students are able to understand problems and apply interfacing and programming methods in embedded systems effectively and efficiently. (C3) (ELO 3, 5, 6, 7)
Sub-CLO	
Sub-CLO 1	Explaining the basic concepts of Control Systems and sample configurations of control systems, analyzing control systems and target criteria's of designing a control system as well as the process that has to be followed while designing one (C2 and C3)
Sub-CLO 2	Explaining the basic concepts of the Laplace transform, modeling in electrical, mechanic and electromechanics systems, and linearization of non-linear systems (C2 and C3)

	Explaining the basic concepts pole and zeroes of a transfer function to determine the response time from a
	control system, explaining quantitively the response of a first order system, explaining the normal response of
Sub-CLO 3	a second order system, and determining the damping ratio, natural frequency, settling time, peak time, percent
	overshoot, and rise time of a second order system (C2 and C3)
	Explaining the basic concepts of steady-state error and its specifications, determining the steady state error as
	a result of an interrupt, determining the sensitivity of a steady-state error as a result of a change in the
Sub-CLO 4	parameters of the control system, and explaining the Routh Hurwitz method to determine the stability in a
	control system (C2 and C3)
	Explaining the basic concepts of the root locus technique, the characteristics of the root locus technique, how
Sub-CLO 5	to plot using the root locus, and using the root locus to determine the main parameters for the components of a
	control system (C2 and C3)
	Explaining the basic concepts of the root locus technique to design a control system or a compensator for
Sub-CLO 6	increasing the transient performance and steady state error of a system, and realizing the compensator
	physically (C2 and C3)
	Explaining the basic concepts of the frequency response in a control system, plotting the frequency response,
Sub-CLO 7	Nyquist diagram sketch and using it to determine the stability of a control system, define and draw a Bode
	plot, determining the gain margin, and determining the phase margin (C2 and C3)
	Explaining the basic concepts of setting the gain to fulfill the criteria needed for the transient response, to
Sub-CLO 8	design a control system or a compensator to increase the transient performance and the steady state error
	performance with the frequency response method (C2 and C3)

	Explaining the basic concepts on mathematical models used to represent the linear time invariant state system,						
Sub-CLO 9	models in the electric and mechanic state space, changing a transfer function to a state space and backwards,						
	as well as linearization in a state space system (C2 and C3)						
	Explaining the basic concepts of designing a state feedback controller with a determined position for the pole,						
Sub-CLO 10	determining if a system is controllable and observable, designing a state feedback controller to fulfill the						
	specifications of the transient response and steady state error performance (C2 and C3)						
	Explaining the basic concepts of modelling the digital computer in a feedback system, the z-transform and the						
	inverse z-transform, determining the transfer function for sampled data's, determining the stability of a						
Sub-CLO 11	sampled-data system and determining if the sampling rates to stabilize the system, and designing a digital						
	control system to fulfill the criterions of a steady state error and transient response (C2 and C3)						
	Explaining the basic concepts of designing and tuning a PID controller using the Direct Synthesis, IMC,						
Sub-CLO 12	Ziegler Nichols, Cohen Coon and the Reactive Curve method (C2 and C3)						
Sub-CLO 13	Designing an embedded system in the form of a project (C3)						
Candy Matarials	a Control Systems						
Study Materials	Control SystemsLaplace Transformation						
	• Linearization of Unlinear Systems						
	Modelling Mathematical Systems						
	Mechanical and Electrical Systems						
	Block Diagram Modelling						
	Graphical Signal Flow Modelling						
	 Graphical Signal Flow Modelling State Variable Models 						
	State Variable Models Error Signal Analysis						
	• Sensitivity of feedback control system towards the variety of parameters in the control system						
	• Siganl disturbance in a Feedback Control System						

	Controlling the transient response of a system
	Steady State Errors
	Second order system
	• Effects of third pole and zero's in a second order system
	Work index of control systems
	Simplification of lienar systems
	• Analyzation of loop systems (open and closed loop)
	• Testing the stability of control systems using characteristics functions and the Ruth Hurwitz Method
	Control system Design
	• Root locus concepts
	Parameter design of control system using the root locus
	• Determining the parameters of PID using trial and error methods, Direct Synthesis, Inter Model Control,
	System Index, Ziegler Nichols, Cohen Coon and the Reaction Curve Method
	Analyzing frequency response using the Bode and Nyquist plot
	Designining PI, PID, Lead, Lag, and Leag Lag systems
	Designing feedback systems with state variables
Reading List	 N.S. Nise, M.A, Control Systems Engineering, 7th edition, Wiley, 2015.
	 R. C. Dorf and R.H. Bishop, Modern Control System, 12th edition, Prentice Hall, 2011
	■ D.E. Seborg, T.F. Edgar, D.A. Mellichamp, and F.J. Doyle, <i>Process Dynamics and Control</i> , 4 th edition,
	Wiley, 2017.

Teaching Plan

					Sub-CLO Achiev	vement Indicator	Sub-
Week	Sub- CLO	Study Materials [with reference]	Teaching Method [with est. time]	Learning Experiences (*O-E-F)	General	Specific	CLO Weight on Course (%)
1	1	• Introduction to Control Systems [Reference] 1. N.S. Nise, M.A. Control Systems Engineering, 7th edition, Wiley, 2015. 2. R. C. Dorf and R.H. Bishop, Modern Control System, 12th edition, Prentice Hall, 2011	Lecturing classes and individual tasks [Estimated time] 100 minutes	Orientation: Introduction to this week's topic (50%) Exercise: Listen to lecture (10%) Feedback:	Able to explain the basic concepts of: a) Control Systems and sample configurations of control systems b) Analyzing control systems and target criteria's of designing a control system c) The process that has to be	Students are able to analyze and give feedback towards the concept of: a) Control Systems and sample configurations of control systems b) Analyzing control systems and target criteria's of	7%

2	2	• Modelling in the frequency domain [Reference] 1. N.S. Nise, M.A. Control Systems Engineering, 7th edition, Wiley, 2015. 2. R. C. Dorf and R.H. Bishop, Modern Control System, 12th edition, Prentice Hall, 2011	Lecturing classes and individual tasks [Estimated time] 100 minutes	Question and answer with the lecturer (40%) Orientation: Introduction to this week's topic (50%) Exercise: Listen to lecture (10%) Feedback: Question and answer with the lecturer (40%)	Able to explain the basic concepts of: a) Laplace transform b) Modeling in electrical, mechanic and electromechanics systems c) Linearization of non-linear systems Assembly Programming	designing a control system c) The process that has to be followed while designing one Students are able to analyze and give feedback towards the concept of: a) Laplace transform b) Modeling in electrical, mechanic and electromechanics systems c) Linearization of non-linear systems Assembly Programming	7%
3	3	Characteristics and performance of a closed control system (1) [Reference]	Lecturing classes and individual tasks	Orientation: Introduction to this week's topic (50%)	Able to explain the basic concepts of: a) Pole and zeroes of a transfer function to	Students are able to analyze and give feedback towards the concept of: a) Pole and zeroes of a transfer	7%

		1. N.S. Nise, M.A, Control Systems	[Estimated			determine the	function to	
		Engineering, 7th edition, Wiley, 2015.	time]	Exercise:		response time	determine the	
		2. R. C. Dorf and R.H. Bishop,	100 minutes	Listen to		from a control	response time	
		Modern Control System, 12th edition,		lecture		system	from a control	
		Prentice Hall, 2011		(10%)	b)	Explaining	system	
						quantitively the	b) Explaining	
				Feedback:		response of a	quantitively the	
				Question		first order system	response of a	
				and answer	c)	Explaining the	first order	
				with the		normal response	system	
				lecturer		of a second order	c) Explaining the	
				(40%)		system	normal response	
					d)	Determining the	of a second order	
						damping ratio,	system	
						natural	a) Determining the	
						frequency,	damping ratio,	
						settling time,	natural	
						peak time,	frequency,	
						percent	settling time,	
						overshoot, and	peak time,	
						rise time of a	percent	
						second order	overshoot, and	
						system	rise time of a	
							second order	
							system	
	,	Characteristics and performance of a	Lecturing		Abl	e to explain the	Students are able to analyze and give	7%
4	4	closed control system (2)	classes and	Orientation:		ic concepts of:	feedback towards the	
							concept of:	

		[Reference]	individual	Introduction	a)	Steady-state	a)	Steady-state	
		1. N.S. Nise, M.A, Control Systems	tasks	to this		errors and its		errors and its	
		Engineering, 7th edition, Wiley, 2015.		week's topic		specifications		specifications	
		2. R. C. Dorf and R.H. Bishop,	[Estimated	(50%)	b)	Determining the	b)	Determining the	
		Modern Control System, 12th edition,	time]			steady state error		steady state error	
		Prentice Hall, 2011	100 minutes	Exercise:		as a result of an		as a result of an	
				Listen to		interrupt		interrupt	
				lecture	c)	Determining the	c)	Determining the	
				(10%)		sensitivity of a		sensitivity of a	
						steady-state		steady-state	
				Feedback:		error as a result		error as a result	
				Question		of a change in		of a change in	
				and answer		the parameters		the parameters	
				with the		of the control		of the control	
				lecturer		system		system	
				(40%)	d)	Routh Hurwitz	a)	Routh Hurwitz	
						method to		method to	
						determine the		determine the	
						stability in a		stability in a	
						control system		control system	
		Root Locus Method	Lecturing	Orientation:		e to explain the	Stu	dents are able to	7%
			classes and	Introduction		c concepts of:		lyze and give	
		[Reference]	individual	to this	a)	The root locus		dback towards the cept of:	
5	5	1. N.S. Nise, M.A. Control Systems	tasks	week's topic	b)	technique The		The root locus	
		Engineering, 7th edition, Wiley, 2015.		(50%)	(U	characteristics of	<i>u</i>)	technique	
		2. R. C. Dorf and R.H. Bishop,	[Estimated			the root locus	h)	The	
		Modern Control System, 12th edition,	time]	Exercise:		technique	/	characteristics of	
		Prentice Hall, 2011	100 minutes			technique			

				Listen to lecture (10%) Feedback: Question and answer with the lecturer (40%)	c) How to plot using the root locus d) Using the root locus to determine the main parameters for the components of a control system	the root locus technique c) How to plot using the root locus d) Using the root locus to determine the main parameters for the components of a control system	
6	6	Designing a control system using the root locus method [Reference] 1. N.S. Nise, M.A, Control Systems Engineering, 7th edition, Wiley, 2015. 2. R. C. Dorf and R.H. Bishop, Modern Control System, 12th edition, Prentice Hall, 2011	Lecturing classes and individual tasks [Estimated time] 100 minutes	Orientation: Introduction to this week's topic (50%) Exercise: Listen to lecture (10%) Feedback: Question and answer	Able to explain the basic concepts of: a) The root locus technique to design a control system or a compensator for increasing the transient performance and steady state error of a system	Students are able to analyze and give feedback towards the concept of: a) The root locus technique to design a control system or a compensator for increasing the transient performance and steady state error of a system	7%

7	7	• Frequency Response Method [Reference] 1. N.S. Nise, M.A, Control Systems Engineering, 7th edition, Wiley, 2015. 2. R. C. Dorf and R.H. Bishop, Modern Control System, 12th edition, Prentice Hall, 2011	Lecturing classes and individual tasks [Estimated time] 100 minutes	with the lecturer (40%) Orientation: Introduction to this week's topic (50%) Exercise: Listen to lecture (10%) Feedback: Question and answer with the lecturer (40%)	b) Realizing the compensator physically Able to explain the basic concepts of: a) The frequency response in a control system b) Plotting the frequency response c) Nyquist diagram sketch and using it to determine the stability of a control system d) define and draw a Bode plot, determining the gain margin, and determining the phase margin	b) Realizing the compensator physically Students are able to analyze and give feedback towards the concept of: a) The frequency response in a control system b) Plotting the frequency response c) Nyquist diagram sketch and using it to determine the stability of a control system d) define and draw a Bode plot, determining the gain margin, and determining the phase margin	7%
8		a Designing a control existent value of the	1	erm Exam		~	7%
9	8	• Designing a control system using the frequency response method	Lecturing classes and	Orientation:	Able to explain the basic concepts of:	Students are able to analyze and give	1 70

		[Reference] 1. N.S. Nise, M.A, Control Systems Engineering, 7th edition, Wiley, 2015. 2. R. C. Dorf and R.H. Bishop, Modern Control System, 12th edition, Prentice Hall, 2011	individual tasks [Estimated time] 100 minutes	Introduction to this week's topic (50%) Exercise: Listen to lecture (10%) Feedback: Question and answer with the lecturer (40%)	 a) Setting the gain to fulfill the criteria needed for the transient response b) Designing a control system or a compensator to increase the transient performance and the steady state error performance with the frequency response method 	feedback towards the concept of: a) Setting the gain to fulfill the criteria needed for the transient response b) Designing a control system or a compensator to increase the transient performance and the steady state error performance with the frequency response method	
10	9	Modelling in the time domain [Reference] 1. N.S. Nise, M.A, Control Systems Engineering, 7th edition, Wiley, 2015. 2. R. C. Dorf and R.H. Bishop, Modern Control System, 12th edition, Prentice Hall, 2011	Lecturing classes and individual tasks [Estimated time] 100 minutes	Orientation: Introduction to this week's topic (50%) Exercise: Listen to lecture	Able to explain the basic concepts of: a) Mathematical models used to represent the linear time invariant state system b) Models in the electric and	Students are able to analyze and give feedback towards the concept of: a) Mathematical models used to represent the linear time invariant state system	7%

				Feedback: Question and answer with the lecturer (40%)	mechanic state space c) Changing a transfer function to a state space and backwards d) Linearization in a state space system	b) Models in the electric and mechanic state space c) Changing a transfer function to a state space and backwards d) Linearization in a state space system	
11	10	Designing a control system in the state space [Reference] 1. N.S. Nise, M.A. Control Systems Engineering, 7th edition, Wiley, 2015. 2. R. C. Dorf and R.H. Bishop, Modern Control System, 12th edition, Prentice Hall, 2011	Lecturing classes and individual tasks [Estimated time] 150x2 minutes	Orientation: Introduction to this week's topic (50%) Exercise: Listen to lecture (10%) Feedback: Question and answer with the lecturer (40%)	Able to explain the basic concepts of: a) Designing a state feedback controller with a determined position for the pole b) Determining if a system is controllable and observable c) Designing a state feedback controller to fulfill the specifications of	Students are able to analyze and give feedback towards the concept of: a) Designing a state feedback controller with a determined position for the pole b) Determining if a system is controllable and observable c) Designing a state feedback controller to fulfill the	7%

					the transient response and steady state error performance Able to explain the	specifications of the transient response and steady state error performance Students are able to analyze and give	7%
12	11	• Digital Control Systems [Reference] 1. N.S. Nise, M.A, Control Systems Engineering, 7th edition, Wiley, 2015. 2. R. C. Dorf and R.H. Bishop, Modern Control System, 12th edition, Prentice Hall, 2011	Lecturing classes and individual tasks [Estimated time] 150x2 minutes	Orientation: Introduction to this week's topic (50%) Exercise: Listen to lecture (10%) Feedback: Question and answer with the lecturer (40%)	basic concepts of: a) Modelling the digital computer in a feedback system, the z-transform and the inverse z-transform b) Determining the transfer function for sampled data's c) Determining the stability of a sampled-data system and determining if the sampling rates to stabilize the system	feedback towards the concept of: a) Modelling the digital computer in a feedback system, the z-transform and the inverse z-transform b) Determining the transfer function for sampled data's c) Determining the stability of a sampled-data system and determining if the sampling rates to stabilize the system	

				d) Designing a digital control system to fulfill the criterions of a steady state error and transient response	d) Designing a digital control system to fulfill the criterions of a steady state error and transient response Students are able to	70/
13 11	• Digital Control System [Reference] 1. N.S. Nise, M.A, Control Systems Engineering, 7th edition, Wiley, 2015. 2. R. C. Dorf and R.H. Bishop, Modern Control System, 12th edition, Prentice Hall, 2011	Lecturing classes and individual tasks [Estimated time] 100 minutes	Orientation: Introduction to this week's topic (50%) Exercise: Listen to lecture (10%) Feedback: Question and answer with the lecturer (40%)	Able to explain the basic concepts of: e) Modelling the digital computer in a feedback system, the z-transform and the inverse z-transform f) Determining the transfer function for sampled data's g) Determining the stability of a sampled-data system and determining if the sampling	Students are able to analyze and give feedback towards the concept of: a) Modelling the digital computer in a feedback system, the z-transform and the inverse z-transform b) Determining the transfer function for sampled data's c) Determining the stability of a sampled-data system and determining if	7%

				Orientation:	rates to stabilize the system a) Designing a digital control system to fulfill the criterions of a steady state error and transient response	the sampling rates to stabilize the system d) Designing a digital control system to fulfill the criterions of a steady state error and transient response	7%
14	12	Designing and Tuning the PID controller [Reference] 1. N.S. Nise, M.A, Control Systems Engineering, 7th edition, Wiley, 2015. 2. R. C. Dorf and R.H. Bishop, Modern Control System, 12th edition, Prentice Hall, 2011	Lecturing classes and individual tasks [Estimated time] 100 minutes	Introduction to this week's topic (50%) Exercise: Listen to lecture (10%) Feedback: Question and answer with the lecturer (40%)	Able to explain the basic concepts of designing and tuning a PID controller using the Direct Synthesis, IMC, Ziegler Nichols, Cohen Coon and the Reactive Curve method	Students are able to analyze and give feedback towards the concept of designing and tuning a PID controller using the Direct Synthesis, IMC, Ziegler Nichols, Cohen Coon and the Reactive Curve method	

15	13	• Group Project	Lecturing classes and individual tasks [Estimated time] 100 minutes	Orientation: Introduction to this week's topic (50%) Exercise: Listen to lecture (10%) Feedback: Question and answer with the lecturer (40%)	Students are able to participate in answering the exercises prepared by the lecturer to review the materials for the final exam	Students are able to solve and give feedback in answering the exercises prepared by the lecturer to review the materials for the final exam	9%
16				Final Exam			

Assignment Design

Week	Assignmen t Name	Sub- CLOs	Assignment	Scope	Working Procedure	Deadline	Outcome
------	---------------------	--------------	------------	-------	----------------------	----------	---------

Week	Assignmen t Name	Sub- CLO	Assignments	Scopes	Working Procedure	Deadline	Outcome
1-14	In-Class Quizzes, Homework and Simulations	1-13	Questions	Summarize the specific week's material and simulations	Individual Tasks	1 week	Quiz results in class and program design
15	Group Project	14	Final Project	Designing the equipment	Group Task	1 week	Student Power-point and results of the presentation

Assessment Criteria

Evaluation Type	Sub-CLO	Assessment Type	Frequency	Evaluation Weight (%)
In-class quiz	1-7 and 8-13	Evaluation Sheet	6	10
Homework and Simulations	2-13	Evaluation Sheet	12	10
Group Project	14	Evaluation Sheet	1	20
Mid-Term Exam	1-7	Essay Questions	1	30
Final Exam	8-13	Essay Questions	1	30
Total				100

Conversion of the students final score

Score Grade Equivalent

85—100	A	4,00
80—<85	A-	3,70
75—<80	B+	3,30
70—<75	В	3,00
65—<70	B-	2,70
60—<65	C+	2,30
55—<60	C	2,00
40—<55	D	1,00
<40	E	0,00

Rubric(s)

A. Criterions for the Group Project Presentation

Grade	Quality of Answer
85-90	If the group is able to present their materials logically, fluently and is able to finish their presentation on time while also being able to answer questions being given by other students or the teacher.
75-84	If the group is able to present their materials logically and fluently while also being able to answer questions being given by other students or the teacher but is not able to manage their time properly
65-74	If the group is able to present their materials logically but is not able to logically explain the process of their material
55-64	The group is not able to present their materials fluently nor logically and is not able to manage their time properly
<55	

B. Mid term exam and Final term exam

Grade	Quality of Answer
100	The answers are precise, every definition and main components are included
76-99	The answers precise enough, all definitions and main components that are needed to answer the question are almost precise
51-75	The answers are less precise, the definitions and main components that are needed to answer the question are less precise
26-50	The answers are very unprecise, the definitions and main components that are needed to answer the questions are missing a lot of details
<25	Wrong answer