

TEACHING INSTRUCTIONAL DESIGN (BRP)

COURSE

CONTROL SYSTEM LABORATORY

by

Surya Darma, M.Si

Undergraduate Program in Physics
Faculty of Mathematics and Natural Sciences
Universitas Indonesia
Depok
November 2020

UNIVERSITAS INDONESIA FACULTY OF MATHEMATICS AND NATURAL SCIENCES PHYSICS UNDERGRADUATE STUDY PROGRAM

	TEACH	ING INSTRUCTION	NAL DESIGN							
Course Name	Control System Laboratory	Credit(s)	Prerequisite course(s)	Requisite for course(s)	Integration Between Other Courses					
Course Code	SCPH603715									
Relation to Curriculum	-									
Semester	6	1	Electronics 2	-	-					
Lecturer(s)	Surya Darma, M.Si									
Course Description	After finishing this course, explain the principals of a capplications, and is able to course will be the Indonesi	control system, select of design a control sys	and chose the transfer fur	nction and the control s	ystem for specific					
Duognam Laguning Outes	ma (DLO)									
Program Learning Outco	ome (PLO)									
Sub-PLO 1	To measure electrical an	o measure electrical and magnetic physical units.								

Sub-PLO 2	To process the data made from experiments and produce a final measurement.					
Sub-PLO 3	To apply advanced electronics concepts in an embedded system environment.					
Sub-PLO 4	Applying concepts in Physics in botch society and livelihood.					
Sub-PLO 5	Applying the concepts thought form system and instrumentational physics.					
Course Learning Outcome (CLO)						
	Students are able to analyze (C4) concepts used in embedded systems and operation systems as well as apply					
CLO	(P4) the Assembly and C programming language in a day-to-day basis to solve problems (A5). (ELO(s) 3, 5, 6,					
	8)					
Sub-CLO						
Sub-CLO 1	Able to explain the basic principles of Control Systems. (C2)					
Sub-CLO 2	Able to determine and select the transfer function and control system of certain applications. (C3)					
Sub-CLO 3	Able to design a control system for a certain process. (C4)					

Study Materials	Introduction to Labview
	• State Variables
	• Time Response
	• PID (Proportional, Integral and Differential)
	• PID Tuning
	Controlling an Inverted Pendulum
	• HVAC (Heating, Ventilation and Air Conditioning)
	Capita Selecta
Reading List	 National Instruments Corporation, LabVIEW Fundamentals, ni.com, 2005 Sulaymon Eshkabilov, Beginning MATLAB and Simulink: From Novice to Professional, Apress, Fargo, USA, 2019
	 Dorf, Richard C., and Bishop, Robert H., Modern Control System, 13th ed., Prentice Hall, 2017. Golnaraghi, Farid., and Kuo, Benjamin C., Automatic Control System, 10th ed. McGraw Hill Education., 2017.
	 Seborg, Dale E., Edgar, Thomas F., and Mellichamp, Duncan A., Process Dynamics and Control, 4th ed., John Wiley & Son., 2017. Quanser, QNET DC Motor Trainer, QNET Rotary Pendulum Trainer, QNET Heating and Ventilation
	Trainer, 2011.

Teaching Plan

					Sub-CLO Achiev	vement Indicator	Sub-
Week	Sub- CLO	Study Materials [with reference]	Teaching Method [with est. time]	Learning Experiences (*O-E-F)	General	Specific	CLO Weight on Course (%)
1	2	Introduction to LabVIEW and MATLAB a. Introduction to LabVIEW b. Introduction to MATLAB [Reference] 1. National Instruments Corporation, LabVIEW Fundamentals, ni.com, 2005 2. Sulaymon Eshkabilov, Beginning MATLAB and Simulink: From Novice to Professional, Apress, Fargo, USA, 2019 3. Dorf, Richard C., and Bishop, Robert H., Modern Control System, 13 th ed., Prentice Hall, 2017. 4. Golnaraghi, Farid., and Kuo, Benjamin	Laboratory work, simulations, creating a report [Estimated time] 200 minutes	Orientation: Introduction to this week's topic (10%) Exercise: Listen to lecture (60%) Feedback: Question and answer	Able to report the result of the experiment and simulate it in a report based on the rules that apply	Able to apply what has been learned throughout the module in a final simulation using the specific sensor.	12%

		C., Automatic Control System, 10th ed. McGraw Hill Education., 2017. State Variables a. Introduction to the variables in a		with the lecturer (30%) Orientation: Introduction to this	Able to report the result of the	Able to apply what has been learned	12%
2	control system b. Signal-Flow graphs and Block Diagram Models c. Time Response and Condition Transition Matrix d. Techniques for Linearizing Systems [Reference] 1. Dorf, Richard C., and Bishop, Robert H., Modern Control System, 13th ed., Prentice Hall, 2017. 2. Golnaraghi, Farid., and Kuo, Benjamin C., Automatic Control System, 10th ed. McGraw Hill Education., 2017.	Laboratory work, simulations, creating a report [Estimated time] 200 minutes	week's topic (10%) Exercise: Listen to lecture (60%) Feedback: Question and answer with the lecturer (30%)	experiment and simulate it in a report based on the rules that apply	throughout the module in a final simulation using the specific sensor.		
3	2	Times Response Towards Various Standard Signals and Response System Control Towards Various Standard Signals a. Signal Testing for Time Response and Control Systems b. Steady State Errors c. Transient Response for a Prototype	Laboratory work, simulations, creating a report [Estimated time]	Orientation: Introduction to this week's topic (10%) Exercise:	Able to report the result of the experiment and simulate it in a report based on the rules that apply	Able to apply what has been learned throughout the module in a final simulation using the specific sensor.	12%

		Controlling the speed and position of a	200 minutes	Listen to			
		DC Motor		lecture			
				(60%)			
		[Reference]					
		1. Dorf, Richard C., and Bishop, Robert H.,		Feedback:			
		Modern Control System, 13 th ed., Prentice		Question			
		Hall, 2017.		and answer			
		2. Golnaraghi, Farid., and Kuo, Benjamin C., Automatic Control System, 10th ed.		with the			
		McGraw Hill Education., 2017.		lecturer			
		Westaw Till Education, 2017.		(30%)			
		PID (Proportional, Integral and		Orientation:	Able to report the	Able to apply what	12%
		Differential) and determining the PID		Introduction	result of the	has been learned	
		Parameters (Trial and Error)		to this	experiment and	throughout the	
		a. Operational Systems		week's topic	simulate it in a report	module in a final	
		b. Performance Criterions for a	Laboratory	(10%)	based on the rules	simulation using the	
		Closed System	work,		that apply	specific sensor.	
		c. Model-Based Design Methodsd. Controller Tuning Relations	simulations,	Exercise:			
			creating a	Listen to			
4	2	[Reference]	report	lecture			
		1. Dorf, Richard C., and Bishop, Robert H.,		(50%)			
		Modern Control System, 13th ed., Prentice	[Estimated				
		Hall, 2017	time]	Feedback:			
		2. Golnaraghi, Farid., and Kuo, Benjamin C.,	200 minutes	Question			
		Automatic Control System, 10th ed.		and answer			
		McGraw Hill Education., 2017.		with the			
		3. Seborg, Dale E., Edgar, Thomas F., and Mellichamp, Duncan A., Process Dynamics		lecturer			
		Wellichamp, Duncan A., Frocess Dynamics		(40%)			

		and Control, 4th ed., John Wiley & Son., 2017.					
5		Presenting	Mid T g a proposal that i	erm Exam	the final project		
6	2	Determining the parameters for a PID using the Direct Synthesis and Ziegler Nichols Reaction Curve Method and applying it towards a DC motor a. Standard Model for a Transfer Function b. Applying the PID c. Direct Synthesis d. Ziegler Nichols Reaction Curve e. Techniques for data processing [Reference] 1. Dorf, Richard C., and Bishop, Robert H., Modern Control System, 13th ed., Prentice Hall, 2017 2. Golnaraghi, Farid., and Kuo, Benjamin C., Automatic Control System, 10th ed. McGraw Hill Education., 2017. 3. Seborg, Dale E., Edgar, Thomas F., and Mellichamp, Duncan A., Process Dynamics and Control, 4th ed., John Wiley & Son., 2017	Laboratory work, simulations, creating a report [Estimated time] 200 minutes	Orientation: Introduction to this week's topic (10%) Exercise: Listen to lecture (50%) Feedback: Question and answer with the lecturer (40%)	Able to report the result of the experiment and simulate it in a report based on the rules that apply	Able to apply what has been learned throughout the module in a final simulation using the specific sensor.	12%
7	2	Controlling an Inverted Pendulum a. Force Analysis and System Equations b. State Space c. Transfer Functions	Laboratory work, simulations,	Orientation: Introduction to this	Able to report the result of the experiment and	Able to apply what has been learned throughout the module in a final	12%

		d. Controlling an Inverted Pendulum [Reference] 1. Dorf, Richard C., and Bishop, Robert H., Modern Control System, 13th ed., Prentice Hall, 2017 2. Golnaraghi, Farid., and Kuo, Benjamin C., Automatic Control System, 10th ed. McGraw Hill Education., 2017. 3. Seborg, Dale E., Edgar, Thomas F., and Mellichamp, Duncan A., Process Dynamics and Control, 4th ed., John Wiley & Son., 2017.	creating a report [Estimated time] 200 minutes	week's topic (10%) Exercise: Listen to lecture (50%) Feedback: Question and answer with the lecturer (40%)	simulate it in a report based on the rules that apply	simulation using the specific sensor.	
8	2	HVAC (Heating, Ventilation and Air Conditioning) a. Process Control b. Motion Control c. Task Based Control d. HVAC Control [Reference] 1. Dorf, Richard C., and Bishop, Robert H., Modern Control System, 13th ed., Prentice Hall, 2017 2. Golnaraghi, Farid., and Kuo, Benjamin C., Automatic Control System, 10th ed. McGraw Hill Education., 2017. 3. Seborg, Dale E., Edgar, Thomas F., and Mellichamp, Duncan A., Process Dynamics	Laboratory work, simulations, creating a report [Estimated time] 200 minutes	Orientation: Introduction to this week's topic (10%) Exercise: Listen to lecture (50%) Feedback: Question and answer	Able to report the result of the experiment and simulate it in a report based on the rules that apply	Able to apply what has been learned throughout the module in a final simulation using the specific sensor.	12%

		and Control, 4th ed., John Wiley & Son., 2017. 4. Quanser, QNET DC Motor Trainer, QNET Rotary Pendulum Trainer, QNET Heating and Ventilation Trainer, 2011. Capita Salacta		with the lecturer (40%)	Able to report the	Abla to apply what	12%
9	2 3	Capita Selecta a. VTOL Control b. Mechatronics Sensor and Control c. EMG Signal Processing (Myoelectric Control) [Reference] b. Dorf, Richard C., and Bishop, Robert H., Modern Control System, 13th ed., Prentice Hall, 2017 b. Golnaraghi, Farid., and Kuo, Benjamin C., Automatic Control System, 10th ed. McGraw Hill Education., 2017 b. Seborg, Dale E., Edgar, Thomas F., and Mellichamp, Duncan A., Process Dynamics and Control, 4th ed., John Wiley & Son., 2017 b. Quanser, QNET DC Motor Trainer, QNET Rotary Pendulum Trainer, QNET Heating and Ventilation Trainer, 2011.	Laboratory work, simulations, creating a report [Estimated time] 200 minutes	Orientation: Introduction to this week's topic (10%) Exercise: Listen to lecture (50%) Feedback: Question and answer with the lecturer (40%)	Able to report the result of the experiment and simulate it in a report based on the rules that apply	Able to apply what has been learned throughout the module in a final simulation using the specific sensor.	12%
10		Presenting	Final project	al Exam t made after the	mid term exam		

Assignment Design

Week	Assignmen t Name	Sub- CLOs	Assignment	Scope	Working Procedure	Deadline	Outcome
1	Evaluation of sub-CLO 1	1	Doing assignments in EMAS	 MATLAB Labview Mathematical System Models Transfer Functions Simple Control Systems 	Individual Tasks on EMAS	40 minutes	Assignment Sheet on EMAS
2	Home Group Discussion	2	Discussion in Ms. Teams	 State Variables Introduction to variables in a system Signal-Flow graph and Block Diagram Models Time Response and Condition Transition Matrix Techniques on Linearizing a system 	Group Discussion, Synchronus on MsTeams	60 minutes (outside of class)	Video recording or discussion results
2	Simulation	2	Doing simulations on state variables that is allowed	Creating a mathematical model, transfer function, determining the variables and response of a system designed using linearization techniques.	Making a video on the simulation	120 minutes	Uploading the video on EMAS / Youtube and report the link

3	Home Group Discussion	2	Discussion in Ms. Teams	System Response Towards Various Standard Signals and Control Techniques on Response Systems towards Varoius Standard Signals • Signal testing for Time Response form a Control System • Steady State Errors • Transient Response from a Prototype • Speed Control and Position Control on a DC Motor	Group Discussion, Synchronus on MsTeams	60 minutes (outside of class)	Video recording or discussion results
3	Simulation	2	Doing simulations on open and closed loop control systems in one of the allowed simulators	Response time of every open and closed control systems.	Making a video on the simulation	120 minutes	Uploading the video on EMAS / Youtube and report the link
4	Home Group Discussion	2	Discussion in Ms. Teams	PID (Proportional, Integral, and Derivative) and determining the PID Parameters (Trial and Error) • Operational Principles • Performance Criterions for a Closed System • Model-Based Design Methods	Group Discussion, Synchronus on MsTeams	60 minutes (outside of class)	Video recording or discussion results

				Controller Tuning Relations			
4	Simulation	2	Doing simulations on complex closed loop systems in one of the allowed simulators	Characteristics of a PI, PD and PID system and determining its parameters	Making a video on the simulation	120 minutes	Uploading the video on EMAS / Youtube and report the link
4	Presentatio n and Focus Group Discussion	2	Presentation and Discussion on MsTeams	PD, PI and PID Control Systems	Group Presentation, Synchronus on MsTeams	60 minutes	Rubric Scoresheet
5	Mid Term Exam	1,2,3	Presenting the progress that has been made on the final project	Includes all models designed based on the transfer function and early simulations			
6	Home Group Discussion	2	Discussion in Ms. Teams	PID (Proportional, Integral, and Derivative) and determining the PID Parameters (Direct Synthesis) • Standard Transfer Function Model • Application of the PID • Direct Synthesis • Ziegler Nichols Reaction Curve • Techniques on Data Processing	Group Discussion, Synchronus on MsTeams	60 minutes (outside of class)	Video recording or discussion results

6	Simulation	2	Doing simulations on PID Tuning using the Direct Synthesis and Ziegler Nichols Reaction Curve emthods in one of the allowed simulators	Characteristics of a PID system while tuning it using the Direct Synthesis and Ziegler Nichols Reaction Curve Method	Making a video on the simulation	120 minutes	Uploading the video on EMAS / Youtube and report the link
6	Presentatio n and Focus Group Discussion	2	Presentation and Discussion on MsTeams	Characteristics of the PID and applying the Direct Synthesis and Ziegler Nichols Reaction Curve Method	Group Presentation, Synchronus on MsTeams	60 minutes	Rubric Scoresheet
7	Home Group Discussion	2	Discussion in Ms. Teams	Contorl on an Inverted Pendulum • Force Analysis and System Equations • State Space • Transfer Functions Control of an Inverted Pendulum	Group Discussion, Synchronus on MsTeams	60 minutes (outside of class)	Video recording or discussion results
7	Simulation	2	Doing simulations on an inverted pendulum in one of the allowed simulators	Characteristics on controlling the Inverted Pendulum	Making a video on the simulation	120 minutes	Uploading the video on EMAS / Youtube and report the link

7	Presentatio n and Focus Group Discussion	2	Presentation and Discussion on MsTeams	Characteristics on controlling the Inverted Pendulum	Group Presentation, Synchronus on MsTeams	60 minutes	Rubric Scoresheet
8	Home Group Discussion	2	Discussion in Ms. Teams	HVAC (Heating, Ventilation and Air Conditioning) • Process Control • Motion Control • Task Based Control • HVAC Control	Group Discussion, Synchronus on MsTeams	60 minutes (outside of class)	Video recording or discussion results
8	Simulation	2	Doing simulations on the process, motion and is tasbased on an HVAC control in one of the allowed simulators	Characteristics on a HVAC Control System	Making a video on the simulation	120 minutes	Uploading the video on EMAS / Youtube and report the link
8	Presentatio n and Focus Group Discussion	2	Presentation and Discussion on MsTeams	Characteristics on a HVAC Control System	Group Presentation, Synchronus on MsTeams	60 minutes	Rubric Scoresheet
9	Home Group Discussion	2	Discussion in Ms. Teams	 Capita Selecta VTOL Control Mecharonics Sensor and Control EMG Signal Processing 	Group Discussion, Synchronus on MsTeams	60 minutes (outside of class)	Video recording or discussion results

9	Simulation	2	Doing simulations on motion based control on a VTOL / Mechatronic or a Myoelectric System in one of the allowed simulators	Characteristics of a Control System (VTOL, Mechatronics Systems or Myoelectric)	Making a video on the simulation	120 minutes	Uploading the video on EMAS / Youtube and report the link
9	Presentatio n and Focus Group Discussion	2	Presentation and Discussion on MsTeams	Characteristics of a Control System (VTOL, Mechatronics Systems or Myoelectric)	Group Presentation, Synchronus on MsTeams	60 minutes	Rubric Scoresheet
10	Evaluation of sub-CLO 2	2	Answering Questions in EMAS	 State Variables Time Response Towards various Standard Signals Controlling Techniques of a Response System towards Various Standard Signals PID (Proportional, Integral, Derivative) Determining the PID Parameters DC Motor Control of an Inverted Pendulum 	Individual Tasks on EMAS	100 minutes	Assignment Sheet on EMAS

				HVAC (Heating, Ventilation and Air Conditioning)			
10	Final Exam	1,2,3	Presenting the final result of the group project that has been accepted after the proposal	Involves all control systems that is used throughout the course and other hardware	Group Task on EMAS	100 minutes	Video uploaded on EMAS and submitting the rubric answersheet

Assessment Criteria

Evaluation Type	Sub-CLO	Assessment Type	Frequency	Evaluation Weight (%)
Discussion	2	Discussion Rubric	7x	20%
Presentations and QnA	2, 3	Presentation Rubric	7x	10%
Sub-CLO Evaluation Assignments	1, 2	Multiple Choice Questions / Short Fill-in Questions on EMAS	2x	20%
Laboratory Work	2	Simulations and Reports	8x	30%
Mid Term Exam	1, 2, 3	Presentation on MsTeams	1x	10%
Final Term Exam	1,2,,3	Presentation on MsTeams	1x	10%
Total				100

Conversion of the students final score

Score	Grade	Equivalent
85—200	A	4,00
80—<85	A-	3,70
75—<80	B+	3,30
70—<75	В	3,00
65—<70	B-	2,70
60—<65	C+	2,30
55—<60	C	2,00
40—<55	D	1,00
<40	Е	0,00

Rubric(s)

A. Criterions for answering the Essai Questions (Simulations, Mid Term Exam and Final Exam)

Grade	Quality of Answer
100	All answers are precise, every definition and main components are fulfilled
76-99	Most answers are precise, the definition and main components are mostly fulfilled
51-75	Only a few answers are precise, most definitions and main components are less complete
26-50	If the student is able to fulfill between 55% and 59% of the rules that apply in creating a report.
<25	If the student is able to fulfill between 50% and 54% of the rules that apply in creating a report.

B. Criterions for the Group Presentation

No	Category	4	3	2	1
1	Group Cooperation	The partner cooperates throughout the experiment while accepting a specific task and is responsible towards it.	The partner cooperates throughout the experiment while accepting a specific task but is not very responsible towards it.	The partner is less likely to cooperate throughout the experiment even though he/she still accepts a certain specific task but is not very responsible	The partner rarely cooperates, does not want to accept a certain task.
2	Mastery of the material	Understands and masters the course's materials and presents it without text	Does not fully understand the materials in the course but presents without using text	Does not fully understand the materials in the course while using texts during the presentation	Does not understand the materials
3	Presentation Delivery	The partner in the course is able to give an explanation that is specific and easy to understand while using helping instruments to explain the concepts easily.	The partner in the course is able to give specific and some are easy to understand explanations while using helping instruments to explain the concepts.	The partner in the course is not able to give a precise and specific explanation towards the concept. Rarely uses instruments to explain the concept.	The explanation given by the partner is not specific and hard to understand while infrequently using instruments to explain the concept.

C. Rubric for Group Discussion

No	Kategori	4	3	2	1
1	Involvement of each member	The partner actively gives feedback while appreciating other people's opinion.	Most of the time, the partner gives feedback while appreciating other people's opinion.	The partner infrequently gives feedback while most of the times appreciates other people's opinion.	The partner rarely gives feedback while also rarely appreciates other people's opinion.
2	Result of Discussion	Able to answer all questions precisely	Most of the questions asked are answered precisely	Only a small part of the questions is answered precisely	Is not able to answer any questions whatsoever
3	Reference Usage	Uses the correct reference in answering the questions	Most of the answers uses a good reference as a base for the answer	Only a small part of the answers uses a good reference as a base for the answer	Does not use any reference to answer the questions