

TEACHING INSTRUCTIONAL DESIGN (BRP) COURSE

INTRODUCTION TO BIOPHYSICS

by

Dr. Nurlely, M.Si.

Undergraduate Program in Physics
Faculty of Mathematics and Natural Sciences
Universitas Indonesia
Depok
August 2020

UNIVERSITAS INDONESIA FACULTY OF MATHEMATICS AND NATURAL SCIENCES PHYSICS UNDERGRADUATE STUDY PROGRAM

	TEACHING INST	RUCTIONAL	DESIGN				
Course Name	Introduction to Biophysics	Credit(s)	Prerequisite course(s)	Requisite for course(s)	Integration Between Other Courses		
Course Code	SCPH603718						
Relation to Curriculum	Elective	2	General	None	None		
Semester	6/7	2	Biology		None		
Lecturer(s)	Dr. Nurlely, M.Si.						
Course Description	After completing this course, me biophysics concepts especially course consists of several topics bioenergy, membrane transport biophotonic related to vision, but topics related to experiment me	in applying physics, including cell be, electrical charace ioacoustics related	cs concepts to livi iophysics, molecu teristic of cell men d to hearing, biom	ng things. Broadly le structure and in mbrane, bioelectro echanics, and a fe	r speaking, this teraction, omagnetic, w other special		
Program Learning Outcome (PLO)						
PLO 1	Able to explain basic biophysics concepts in everyday life.						
PLO 2	Able to classify and understa	and biophysics ph	enomenon related	to live science.			

DI O 2	Able to determine method of measurement of biological material through its macromolecule				
PLO 3	structure, intra and inter molecular interaction as well as different kind of measurement technique.				
Course Learning Outcome (CLO	O)				
CLO 1	After completing this course, medical physics and biophysics student are able to know and				
CLO I	understand biophysics phenomenon that happen in biology and medicine or other live sciences.				
Sub-CLO(s)					
Sub-CLO 1	Able to explain and apply basic biophysics concepts to classify structure, characteristic, and				
Sub-CLO I	function of macromolecule.				
Sub-CLO 2	Able to explain and apply thermodynamics concepts on biological process and system.				
Sub-CLO 3	Able to explain and apply electromagnetism concepts on cell membrane.				
Sub-CLO 4	Able to explain and apply biophotonic and bioacoustics concepts to vision and hearing sense.				
Sub-CLO 5	Able to explain and apply biophysics concepts on muscle contraction, biomechanics of hard and				
Sub-CEO 3	soft structure as well as the biophysics of radiation.				
Sub-CLO 6	Able to explain and apply biophysics concepts and its application in determining characteristics				
Sub CEO 0	of macromolecule.				
	1. Introduction to cell biophysics				
	2. Molecular structure and interaction				
	3. Bioenergy 1				
	4. Bioenergy 2				
	5. Membrane Transport				
Study Materials	6. Electrical characteristics of cell membrane				
	7. Bioelectromagnetic				
	8. Biophotonic				
	9. Bioacoustics				
	10. Biomechanics				
	11. Biophysics of radiation				

	12. Biophysics technique and application 1
	13. Biophysics technique and application 2
Reading List	 W. Hoppe, W. Lohmann, H. Markl, H. Ziegler, Biophysics, Publisher: Springer; 1st Edition (September 21, 1983). Patrick F. Dillon, Biophysics, Published in the United States of America by Cambridge University Press, New York, 2012. Rodney M J Cotteril, Introduction to Biophysics, Published by John Wiley & Sons Ltd, 2002. Thomas Heimburg, Thermal Biophysics of Membrane, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007. MUDr. Elena Kukurová, CSc, Eva Kráľová, Michal Trnka, Basics of Medical Physics and Biophysics for electronic education of health professionals, Publisher: Asklepios, Bratislava 2013.

I. Teaching Plan

					Sub-CLO Ac	hievement Indicator	Sub- CLO
Week	Sub- CLO	Study Materials [with reference]	Teaching Method [with est. time]	Learning Experiences (*O-E-F)	General	Specific	Weight on Course (%)
1	1	Cell biophysics References: [1] & [5]	Asynchronous: Reading, lecture video, assignment, discussion 150 minutes Synchronous: Discussion through msTeams 50 minutes	Orientation: Synchronous lecture, watching lecture video, reading material (40%) Exercise: Discussion with lecturer/class (30%) Feedback: Question and answer with lecturer (30%)	Able to understand basic concept of emission, absorption, and molecular interaction	Able to understand basic cell biophysics concept and design an application of it for biology, medicine, or other live sciences.	8.33%
2	1	Molecular structure and interaction References: [1] & [5]	Asynchronous: Reading, lecture video, assignment, discussion 150 minutes Synchronous:	Orientation: Synchronous lecture, watching lecture video, reading material (40%) Exercise:	Able to understand basic concept of emission, absorption, and molecular interaction	Able to understand basic cell biophysics concept and design an application of it for biology, medicine, or other live sciences.	8.33%

			Discussion through msTeams 50 minutes	Discussion with lecturer/class (30%) Feedback: Question and answer with lecturer (30%)			
3	2	Thermodynamics, Conservation of Energy, Biological Process References: [1]-[3]	Asynchronous: Reading, lecture video, assignment, discussion 150 minutes Synchronous: Discussion through msTeams 50 minutes	Orientation: Synchronous lecture, watching lecture video, reading material (40%) Exercise: Discussion with lecturer/class (30%) Feedback: Question and answer with lecturer (30%)	Able to understand basic concept of conservation of energy and biological process and system.	Able to understand basic thermodynamics concepts and design an application of it for biology, medicine, or other live sciences.	8.33%
4	2	Bioenergy, Gibbs free energy for metabolic reaction References: [1] & [5]	Asynchronous: Reading, lecture video, assignment, discussion 150 minutes Synchronous:	Orientation: Synchronous lecture, watching lecture video, reading material (40%)	Able to understand basic concept of bioenergy and Gibbs free energy for metabolic reaction	Able to understand basic bioenergy concepts and Gibbs free energy for metabolic reaction and design an application of it for biology, medicine, or other live sciences.	8.33%

			Discussion through msTeams 50 minutes	Exercise: Discussion with lecturer/class (30%) Feedback: Question and answer with lecturer (30%)			
5	3	Difusion, Osmosis, Selective Membrane References: [1] & [4]	Asynchronous: Reading, lecture video, assignment, discussion 150 minutes Synchronous: Discussion through msTeams 50 minutes	Orientation: Synchronous lecture, watching lecture video, reading material (40%) Exercise: Discussion with lecturer/class (30%) Feedback: Question and answer with lecturer (30%)	Able to understand basic biophysics concept of diffusion, osmosis, and selective membrane	Able to understand basic biophysics concepts for diffusion, osmosis, and selective membrane and design an application of it for biology, medicine, or other live sciences.	5.55%
6	3	Potential membrane and electrical impulse in cell References: [1] & [5]	Asynchronous: Reading, lecture video, assignment, discussion 150 minutes	Orientation: Synchronous lecture, watching lecture video, reading material (40%)	Able to understand basic concept of potential membrane and impulse conduction in cell	Able to understand basic biophysics concepts of potential membrane and impulse conduction and design an application of it for biology, medicine, or other live sciences.	5.55%

			Synchronous: Discussion through msTeams 50 minutes	Exercise: Discussion with lecturer/class (30%) Feedback: Question and answer with lecturer (30%)			
7	3	Magnetic characteristic and biological material interaction with low frequency electrical current References: [1] & [5]	Asynchronous: Reading, lecture video, assignment, discussion 150 minutes Synchronous: Discussion through msTeams 50 minutes	Orientation: Synchronous lecture, watching lecture video, reading material (40%) Exercise: Discussion with lecturer/class (30%) Feedback: Question and answer with lecturer (30%)	Able to understand basic concept of magnetic character of biological material	Able to understand basic biophysics concept of magnetic character and biological material interaction with low frequency current and design an application of it for biology, medicine, or other live sciences.	5.55%
8					erm Exam		
9	4	Biophysics of hearing References: [1] - [3]	Asynchronous: Reading, lecture video,	Orientation: Synchronous lecture, watching lecture	Able to understand basic biophysics concepts of hearing	Able to understand basic biophysics concept of human hearing system and design an	8.33%

			assignment, discussion 150 minutes Synchronous: Discussion through msTeams 50 minutes	video, reading material (40%) Exercise: Discussion with lecturer/class (30%) Feedback: Question and answer with lecturer (30%) Orientation:		application of it for biology, medicine, or other live sciences.	
10	4	Mechanism of human hearing References: [1] – [3]	Asynchronous: Reading, lecture video, assignment, discussion 150 minutes Synchronous: Discussion through msTeams 50 minutes	Orientation: Synchronous lecture, watching lecture video, reading material (40%) Exercise: Discussion with lecturer/class (30%) Feedback: Question and answer with lecturer (30%)	Able to understand basic concept vibration and waves as well as mechanism of human hearing.	Able to understand basic physics concept of vibration and waves related to human hearing and ultrasound therapy and diagnostic and design an application of it for biology, medicine, or other live sciences.	8.33%
11	5	Biomechanic and muscle contraction	Asynchronous: Reading, lecture video,	Orientation: Synchronous lecture,	Able to understand basic concept of biomechanics and muscle contraction	Able to understand basic concepts of biomechanics, contraction and elasticity of	5.55%

		References: [1] & [5]	assignment, discussion 150 minutes Synchronous: Discussion through msTeams 50 minutes	watching lecture video, reading material (40%) Exercise: Discussion with lecturer/class (30%) Feedback: Question and		muscle and design an application of it for biology, medicine, or other live sciences.	
				answer with lecturer (30%)			
12	5	Biomechanics of hard and soft structure References: [1] & [5]	Asynchronous: Reading, lecture video, assignment, discussion 150 minutes Synchronous: Discussion through msTeams 50 minutes	Orientation: Synchronous lecture, watching lecture video, reading material (40%) Exercise: Discussion with lecturer/class (30%) Feedback: Question and answer with lecturer (30%)	Able to understand basic biomechanics concept of soft and hard structure	Able to understand basic biomechanics concept of soft and hard structure in human and design an application of it for biology, medicine, or other live sciences.	5.55%
13	5	Biophysics of radiation, radioactivity, radiation	Asynchronous:	Orientation:	Able to understand basic concept of radioactivity,	Able to understand basic concept of radioactivity, radiation	5.55%

		interaction and cellular/molecular effect of ionizing radiation. References: [1] & [5]	Reading, lecture video, assignment, discussion 150 minutes Synchronous: Discussion through ms Teams 50 minutes	Synchronous lecture, watching lecture video, reading material (40%) Exercise: Discussion with lecturer/class (30%) Feedback: Question and answer with lecturer	radiation interaction, and cellular/molecular effect of ionizing radiation	interaction, and cellular/molecular effect of ionizing radiation and design an application of it for biology, medicine, or other live sciences.	
				(30%) Orientation:			
14	6	Spectroscopy and electrophoresis References: [1] & [5]	Asynchronous: Reading, lecture video, assignment, discussion 150 minutes Synchronous: Discussion through msTeams 50 minutes	Synchronous lecture, watching lecture video, reading material (40%) Exercise: Discussion with lecturer/class (30%) Feedback: Question and answer with lecturer (30%)	Able to understand basic concept of spectroscopy measurement and electrophoresis	Able to understand basic concept of spectroscopy measurement and electrophoresis and design an application of it for biology, medicine, or other live sciences.	8.33%

15	6	Characterization and measurement method using AFM, SEM, and XRD References: [1] & [5]	Asynchronous: Reading, lecture video, assignment, discussion 150 minutes Synchronous: Discussion through msTeams 50 minutes	Orientation: Synchronous lecture, watching lecture video, reading material (40%) Exercise: Discussion with lecturer/class (30%) Feedback: Question and answer with lecturer (30%)	Able to understand basic concept of AFM, SEM, and XRD	Able to understand basic concept AFM, SEM, and XRD for characterization and measurement and design an application of it for biology, medicine, or other live sciences.	8.33%
16				Fina	l Exam		

II. Assignment Design

Week	Assignment Name	Sub- CLOs	Assignment	Scope	Working Procedure	Deadline	Outcome
1	Individual Assignment 1	SUB- CLO 1	Individual Assignment	BiophysicsCellChromosomeDNARNA	Homework	1 week	Answer sheet
2	Individual Assignment 2	SUB- CLO 2	Individual Assignment	Emission and absorptionMolecular interaction	Homework	1 week	Answer sheet
3	Group Assignment 1	SUB- CLO 2	Group Assignment	 Bioenergy Thermodynamics and biological process First Law of Thermodynamics Enthalpy Conservation of Energy 	Group Assignment	1 week	Answer sheet
4	Group Assignment 2	SUB- CLO 2	Group Assignment	 Bioenergy Entropy and Gibbs Free Energy Second Law of Thermodynamics Metabolic reaction 	Group Assignment	1 week	Answer sheet
5	Individual Assignment 3	SUB- CLO 3	Individual Assignment	 Membrane transport Diffusion Osmosis Gradient potential Gas transport 	Homework	1 week	Answer sheet
6	Individual Assignment 4	SUB- CLO 4	Individual Assignment	 Electrical characteristic of cell membrane Membrane potential Action potential and impulse conduction 	Homework	1 week	Answer sheet
7	Group Assignment 3	SUB- CLO 4	Group Assignment	 Bioelectromagnetic Dielectric of biological material Magnetism of biological material Interaction of biological material with low frequency electric current 	Group Assignment	1 week	Answer sheet
9	Tugas mandiri 5	SUB- CLO 4	Individual Assignment	Biophotonic	Homework	1 week	Answer sheet

				 Human vision Vision correction Color Aberration 			
10	Group Assignment 4	SUB- CLO 4	Group Assignment	 Bioacoustic Vibrations and Waves Mechanism of hearing Ultrasound for therapy and diagnostic 		1 week	Answer sheet
11	Individual Assignment 6	SUB- CLO 5	Individual Assignment	 Biomechanic Biophysics of muscle contraction Mechanics of muscle Elasticity of muscle 	Homework	1 week	Answer sheet
12	Individual Assignment 7	SUB- CLO 5	Group Assignment	Biomechanics of soft and hard structure	Group Assignment	1 week	Answer sheet
13	Individual Assignment 8	SUB- CLO 5	Individual Assignment	 Radioactivity Interaction of radiation with matter Cellular and molecular effect of radiation 	Homework	1 week	Answer sheet
14	Group Assignment 5	SUB- CLO 6	Group Assignment	 Ultracentrifuge Electrophoresis Spectroscopy	Group Assignment	1 week	Answer sheet
15	Group Assignment 6	SUB- CLO 6	Group Assignment	SEMXRMAFM	Group Assignment	1 week	Answer sheet

III. Assessment Criteria (Learning Outcome Evaluation)

Evaluation Type	Sub-CLO	Assessment Type	Frequency	Evaluation Weight (%)
Individual Assignment	1 - 5	Homework	8	30 %
Group Assignment	2 - 6	Group Assignment	6	30 %
Mid-Term Exam	1 - 4	Problem sets	1	20 %
Final Exam	4 - 6	Problem sets	1	20 %
			Total:	100%

IV. Rubric(s)

This rubric is used as a guideline for assessing or giving levels of student performance results. a rubric usually consists of assessment criteria that include the dimensions / aspects that are assessed based on indicators of learning achievement. This assessment rubric is useful for clarifying the basics and aspects of the assessment so that students and lecturers can be guided by the same thing regarding the expected performance demands. Lecturers can choose the type of rubric according to the assessment given.

A. Conversion of the student's final score

Score	Grade	Equivalent
85 - 100	A	4.00
80 - < 85	A-	3.70
75 - < 80	B+	3.30
70 - < 75	В	3.00
65 - < 70	B-	2.70
60 - < 65	C+	2.30
55 - < 60	С	2.00
40 - < 50	D	1.00
< 40	E	0.00

B. Assessment rubric: project report and papers

Rubric 1 (Mid-Term Exam and Final Exam)

- 1) Able to write down their ideas and use it to solve a problem (25%);
- 2) Able to use the correct concept in solving the problem (35%);
- 3) Able to formulate the final result correctly (30%);
- 4) Able to use the appropriate dimension, units, and significant figures (10%);